

RITTMO Agroenvironnement®

INTERREG IVB

Intérêts agronomiques des biochars: Résultats du projet BioenNW (INTERREG NW European Project)

Mohammed Benbrahim

BioenNW Project

- Support and promote development of Bioenergy
- 11 partners
 - European Bioenergy Research Institute ASTON
 Univ : lead-partner
 - RITTMO in charge of :
 - Contacting stakeholders and developing a BSC
 - 1st BRIN 22nd of May 2014
 - » Call for stakeholders interested in testing pyrolysis of their residues and in having their biochars studied
 - Investigate agronomic interest of Biochars

Agronomic interest of Biochars

Interactions Biochars / micro-organismes Interactions Biochars / Plant growth (root; defense;..)

Studied biochars

• 8 differents biochars :

Biochar Code	Feedstocks	Production Scale	Pyrolysis Temperature (°C)	
PmW-BC	Poultry manure and wood	Pilote	500	
D1-BC	Digestate of corn	Pilote	500	
D2-BC	Digestat (corn silage> 60%, manures)	Industrial	700	
W1-BC	Forestry Residues (Branches and tops)	Industrial	650	
W2-BC	Forestry Residues	Pilote	500	
WC-BCX	Vegetable and forestry wastes; refuse compost	Pilote	500	
D3-BC	Digestate cattle manure	Pilote	500	
Pig-BC	Pig manure	Pilote	500	

Studied biochars

• Mineral and organic content :

Biochar	MS	ъЦ	Ν	P ₂ O ₅	K ₂ O	ОМ
Code	% PB	рп	% PB	% PB	% PB	% PB
PmW-BC	99.5	10.7	1.59	10.04	6.48	29.4
D1-BC	98	10.6	1.92	5.48	11.28	31.8
D2-BC	99.4	11	0.8	9.64	7.01	52.8
W1-BC	67	9.7	0.41	0.24	0.6	54.4
W2-BC	100	9.1	0.59	0.44	0.8	90.4
WC-BCX	100	11.9	0.87	0.67	1.2	17.4
D3-BC	98.2	11.4	0.99	3.38	5.19	64.4
Pig-BC	100	11.9	1.66	8.74	9.85	37

Agronomic values compared to French Fertilizer Regulation

Biochar	Code	ОМ (%РВ)	N+P ₂ O ₅ +K ₂ O (%PB)	CaO (%PB)	MgO (%PB)	CaO+MgO (%PB)
French Regulation (NF) thresholds		NFU 44-051 >20	NFU 42-001 > 7			NFU 44-001 > 15
BC1 R1501017	PmW-BC	29,4	18,1	28,66	2,56	31,22
BC2 R1502004	D1-BC	31,8	18,68	5,15	2,19	7,34
BC3 R1504035	D2-BC	52,8	17,45	6,99	4,83	11,82
BC4 R1504036	W1-BC	54,4	1,25	2,55	0,2	2,75
BC5 R1505058	W2-BC	90,4	1,83	19	2,8	21,8
BC6 R1505059	WC-BCX	17,4*	2,74	6,69	0,49	7,18
BC7 R1505060	D3-BC	64,4	9,56	4,5	1,46	5,96
BC8 R1505061	Pig-BC	37	20,25	10,8	6,99	17,79

List of realized assays

TECHNOLOGIQUE

List of realized assays

- Feeding doses:
 - 4 T/ha for all the assays (NH₃-Volatilization and NO₃ leacheate, C-mineralization and effect on pH) except phosphorus)
 - For Phosphorus essay: equivalent 4 T/ha for all biochars or 40 T/ha for Wood-based biochars (P-Content)
 - 10 T/ha for Aggregate stability and run-simulator for water infiltration essays

Effects on soil aggregate stability

- Biochar incorporation and soil incubation
 - Biochars incorporated to 500g of soil ;
 - Incubation in greenhouse for 2 months ;
 - After 10 and 60 days of incubation, soil-biochar samples were dried at 40°C and sieved to collect the 1-2 mm fraction for aggregates measurement.
- Water stables aggregates measurements :
 - The dried 1-2mm fractions were sieved at 200 μm sieves two times :
 - 1. In distilled water to determine the water unstable aggregate
 - 2. In dispersing solution to determine the water stable aggregate
 - The water stable aggregates are the expressed as percent of the total 200 μ m aggregate

Effects on soil aggregate stability

- No tangible effect:
- 10 days after biochar application, only D3-BC and WC-BCX had slightly increased the WAS (+6 – 7 %) whereas the Pig-BC has slightly decreased the WAS (- 11 %) compared to the control
- No effect after 2 months

Effects on the soil pH

• At a rate of 4 T/ha, only the W2-BC has increased the soil-pH. Effect on soil pH seems to be related to the water extractible Ca rather than a total Ca content.

Effect on carbon mineralization

- **Objective:** Study the mineralization of carbon kinetic in soil during an incubation period of 91 days at 28°C (equivalent to 1,8 years in field)
- **Reference:** «Characterization of organic matter by potential mineralization of carbon and nitrogen.» French Norm XP U44-163

Phosphorus biodisponibility of biochars

- References:
 - Developed by Chaminade (1960. 1964),
 - Revised by Lemaire (1977),
 - Summarized by Lombaert (1992).
- Ray grass test :
 - Ray-grass culture in green house with biochar application (4 T/ha or 40 T/ha depending on their Pcontent)
 - Repetitive cuttings of foliar biomass: starting from the 5th week, then all 3 weeks
 - All biomass are dried, weighed and added
 - Analysis of biomass: content and export of P
 - Calculations:
 - Indicator of bioavailability
 - Fertilizing value of P compared to mineral reference
 - Apparent use coefficient of P
- Soil test :
 - Extraction of the soil solution after ray-grass growth
 - Use of ceramic porous for soil solution extraction
 - Measurement of water soil –P content in the soil solution (green malachite dye method)

- ✓ Significant increase of P uptake for all biochars expected W2-BC and WC-BC compared to the control
- ✓ The **apparent use coefficients** of D3-BC and Pig-BC are **similar to the mineral reference** (TSP)
- ✓ Wooded biochars have less available phosphorus even if used at high rate application
- ✓ Biochars increased P-soil solution and confirmed the relative high availability of their P-content

Effects on N volatilization

- Soil incubation method:
 - Volatilization chamber, containing:
 - 150g DM of soil ± biochar (4T DM/ha)
 - Nitrogen fertilizer: urea (240kgN/ha) spread on the surface
 - Incubation in laboratory at 20±3°C, humidity 70%RH
 - Air flow control = 1,25L air/minute /chamber
 - Trapping in sulfuric acid solution (0,05M)
 - Kinetic of volatilization at 1, 2, 3, 6, 10 and 15 days

Effects on N volatilization

• Final results :

NTM

- ✓ 4 biochars increase volatilization (pH effect, N and ammonia content of biochar, ??),
- ✓ 3 biochars have no effect,
- ✓ 1 biochar slightly decreases volatilization.

Effects on soil root germination

Suitability test of biochar formulation in growing media

• Objective :

 study biochar potentials to become a feedstock of growing media (notably a sphagnum peat & coir alternative)

Applications : soil-free plant productions

- Green plants : *Musa acuminata* (dwarf banana tree)
- Flower plants : Zinnia angustifolia (zinnia)

• Experiment :

- 2 types of growing media
- 3 studied biochars4 incorporation doses
 - 0% (control)
 - 5%, 10% & 20% (v/v) of biochar
- Fertilization : NPK nutritive solution
- Harvest : after 2 months of growth

Suitability test of biochar formulation in growing media

• First observation : Phytotoxicity

Very quickly (3 days), seedlings (of the 3 species) of various modalities show **phytotoxicity symptoms**, or die.

Zinnia

Bananier

Biochars incorporation doses less than 5% (v/v)??

Suppressive effect of biochars in vitro

Suppressive effect of biochars in vitro

- Results:
 - % of inhibition in relation to the control (1-D1/D_t) (fresh biochars)

10 days of growth	D1-BC	D2-BC	PmW-BC	W1-BC
Rhizoctonia solani	58,13%	63,41%	67,89%	65,24%
Phytophtora sp.	62,20%	68,70%	69,51%	76,02%
Pythium ultimum	49,17%	72,92%	73,75%	70,63%

10 days of growth	W2-BC	WC-BCX	D3-BC	Pig-BC
Rhizoctonia solani	41,38%	33,99%	44,83%	33,99%
Phytophtora sp.	29,76%	40,49%	41,46%	36,59%
Pythium ultimum	26,06%	34,46%	29,38%	22,60%

Conclusions

www.rittmo.com

Conclusions for the BioenNW project: www.rittmo.com

- Ecotoxicological impact :
 - Risks with few kinds of biochars in most critical scenario.
- Agronomic interest :
 - High P bioavailability for plant nutrition
 - Potential alcalinizing effect; Carbon from biochar seem to be recalcitrant
 - Little effect on soil aggregates stability; Potential negative effect on nitrogen volatilisation
- Growing media formulation :
 - Severe phytotoxicity with digestate based biochars : importance of feedstock selection
- Effects on microorganisms :
 - Clearly an effect on soil born microorganisms :
 - Suppressive effect on telluric fungi

New project about biochars 2016-2017

- **CARBOVIT** : Comparative study of valorization of one feedstock by torrefaction, carbonization and pyrolysis.
 - One unique feedstock, transformed by 3 different processes,
 - Evaluation and comparison of agronomic quality of biochars,
 - Introduction of a new solution of valorization for this feedstock.
 - > Alsatian project with local partners
 - Depending on results, possibility to extend the project at national and international scale

Futur?

- NuCy
- Mineral recovery from wastes, residues and waste-waters for a more efficient material flow in the circular economy

• INTERREG V North-West Europe

• Submitted on June 2016

Mohammed BENBRAHIM: mohammed.benbrahim@rittmo.com

RITTMO

REMERCIEMENTS

